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WIND SHEAR MODELING AND DETECTION: AN ANALYSIS IN TERMS OF A FIRST-PASSAGE PROBLEM
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ABSTRACT

aAn approach is proposed for extracting infor-
mation from airborne Doppler radar returns that
-an be used to determine the presence of wind
shear in commercial aviation. lIssues that are
discussed include modeling in terms of stochas-
tic differential equations, estimation in terms
Sf minimummean-square-error filters, and detec-
tion in terms of a first passage problem. Some
Jiscussion of the hardware architecture needed
to process the data in a timely and efficient
marner is also included.

i. INTRODUCTION

The probiem of wind shear in commercial avia-
tion has always exicted, but only recently hag it
peen given the attention it deserves. In the last
fifteen years, it has been listed as the cause of
several accidents involving large carriers, with
the most recent being the crash of Deita Airlines
Flight 191 in Dallas on August 2, 1985 that
claimed the lives of 137 people.

The phenomenon can be loosely described as a
sudgen downburst of wind at a velocity of aproxi-
mately 40 meters/second which, upon impact with
the ground, results in a horizontal component of
wind velocity with high magnitude, and with
girection that abruptly changes as one moves
through it at an altitude close to the ground.
Thus it poses a severe hazard to aircraft who
encounter this so-called microburst (see Fujita
[1]) in either the take-off or landing phase of
flight, in that the aircraft first experiences a
high head wind causing lift followed suddenly by a
high tail wind causing descent. Therefore, with
little altitude in which to maneuver, pilots are
unable to recover control and disaster results.

The many causes of wind shear are discussed in
report {2]; also see Doviak and Zrnic {3,chap. ?1].
These range from wet microbursts that occur in the
wake of thunderstorms to dry microbursts that
occur in more tranquil climatic conditions.
Research in this area continues to gain a better
understanding of the physics involved.

The above report also discusses various
methods for Jetecting the presence of wind shear
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and alerting the pilot in a timely fashion. Among
these is the use of ground based radars such as the
system called NEXRAD, a planned network cf Doppler
radars to be operated by the National Weather
Service, and a proposed Doppler radar system called
TDWR that would be placed specifically at principai
airports. The report also proposes the use of
airborne Doppler radars, and it is this topic that
we wish to explore in this paper.

To be more precise, we shall propose a method
for extracting information from Doppler rzdar re-
turns that can be used to determine the presence
of wind shear. Issues to be discussed will in-
clude modeling in terms of stochastic differential
equations, estimation in terms of minimum-mean-
square-error (MMSE) fiiters, and detection in
terms of a first-passage problem. In addition, we
shall include some discussion of the hardwaie
architecture needed to process the data in a
timely and efficient manner.

2. MATHEMATICAL DESCRIPTION

The method of solution we shall investigate is
based on the classical disruption probiem. In the
mathematics literature, this is sometimes called
the first-passage problem or the exit problem.
More precisely, one monitors the evolution of a
stochastic process and attempts to determine the
first time the process reaches a boundary or
exceeds a threshold. In terms of detecting wind
shear, the first time the threshold is exceeded
will correspond to the onset of a microburst. Our
formulation will be based on a paper by Davis [4]
who shows how nonlinear filtering techniques can
be useful in the detection process. We now
proceed to describe the radar signal returns, the
state space model, and the filtering and detection
algorithm.

Radar Signal Returns

The radar signals used In weather applications
are composites of signals from a very large number
of scatterers (e.g., hydrometeors) each of which
can be considered a point target; collectively
they describe a so-called distributed target.
After the round trip propagation delay, echoes due
to one pulse are continuously received over a time
interval equal to twice the time it takes the
pulse to propagate across the volume containing
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the scatterers. The echoes can be expressed as
(see, e.qg., Van Trees [5])
-y = 9
r(Ls) r(srv/c)
1 —4mri/A, ~j4nry/A
= zliague Je
where tg = 2r,/c is the so-cal led range

time, r, is the range resolution volume, ri s
the incremental range within the volume, |Aj|/vZ
is the echo amplitude of the ith scatterer
located at range r,, + rj, and W; is the cor-
responding range weighting function. For a short
pulse duration, however, this equation does not
contain any Doppler shift information because
weather targets move at relatively slow speed

(ry is constant during the time scatterer i is
illuminated by the pulse). Therefore, {n order to
include Doppler shift information needed for wind
shear analysis, one would have to look at returns
from a number of pulses where each return is of
the above form and consists of reflections at a
number of range gates. By proper sampling, then,
a sequence of complex video sampies r(kTg)
separated by the pulse repetition time Tg can be
obtained for each and every range gate. This
sequence would consist of a signal in additive

noise, i.e.,

rikty) = SedKTs Ly k= 0,1, M1

where wy is the Doppler shift and M is the
number of returns considered at one time. The
fundamental difference between these egquations is
that the former describes the reflection process
fn space (range time) while the latter describes
it In time (samplie time) at one specific range.
Because our analysis will be based on the sample
time sequences that contain the Doppler shift
information, the use of dynamical models that
incur abrupt changes are natural candidates for
wind shear applications.

2tate Space Mode!

in view of the above discussion. let us assume
that the radar return can be modeled as

Fe = hisg) + vt 1)

whers hise) = A sinfwc + 4mse/A0t,

A = amplitude (enveiope).

S¢ = radial velocity (along the radar’s
beam axis),

vVt = Gaussian white noise with zero mean
and correlation matrix v,

we = carrier freguency, and

A = wavelength.

We are thus assuming a phase modulation format
where each measurement ry represents a return at
scme fixed range gate; other formats might also be
applicable. More precisely, consider the fol low-
ing figure denoting radar returns from sequential
puises of pulse repetition time T4 and round

Trip propagation time 1 as defined above:

ro

Figure 1

The sequence of M points {a} denotes samples

of the scattered signal at some distance ry in
the entire volume, {b} denotes samples at dis-
tance rp, etc. Imagine., for example, that each
return is separated by Tg = 0.1 ms arising from
an assumed microburst of 15 km in depth. These
various sequences can be used to generate statis-—
tics for s¢ at the corresponding ranges r,,

within the microburst. For example, one could use
all M samples in a batch mode to compute the
radial velocity with a resolution (A/2) (1/MTg),
where A is the radar carrier wavelength; either
FFT or covariance methods could be used.

Now suppose one wishes to estimate the occur-
rence of the abrupt change in the velocity St
that accompanies a microburst. Consider the
following figure:
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Figure 2

Here we have shown that. in a microburst., the down-
burst impacts the ground and the magnitude of the
velocity v changes abruptly from zero at the

center of the microburst to some relatively large
nominal value * vpomi in the absence of a
microburst, the magnitude and direction of v are
random.

To formulate a state space model for the above
situation, let us imagine that before the micro-
burst. the velocity is a stochastic process x¢
whose mean is a relatively small nonzero constant
and whose variance is a relatively large constant:
after the microburst, we shall imagine that the
velocity is a stochastic process bt whose mean
is a relatively large constant {corresponding to
vVnhom! 8nd whose variance is relatively small.

Thus we can write

St = by Z¢ + x¢ (1-2¢) (2)

where




¢ ifF £< 7

Zy = (3)
I if t27

and T denotes the random time of occurrence of the
microburst. [f we now assume that T is an exponen-
tially distributed random variable with parameter
A. and redefine the observations r¢ in (1) as

Qv¢ = redt, then a possible model might be

dx 0 -F 0 o0]lx
state: dz | = |Ajdt + 0 - 0f{ztat
db 0 0 0 -G{{b
dWy (4-a)
+1 dMe (4-p)
dB (4-c)

observation: dvy = A sinfws + 4nfbeze
+ xe(l-2¢) 1/20t + aVye (5)

where Wy = Brownian motion (mean zero and variance
W.t)
ct).

My = martingale associated with a Poisson
process zy stogped at its first
jump time,

By = Brownian motion (mean zero and variance
Bet),

V¢ = Brownian motion (mean zero and variance
Vet), and

aitl Brownian motions and initiai conditions are
mutually independent,

The parameters F and G must be chosen to
achieve the desired statistical properties men-
tioned above and. at the same time, must guarantee
stable solutions when their discrete approxima-
tions are impiemented on a digitai computer. The
stability issue will be discussed later in the
section on simulation. Considering the statisti-
cal properties required of x4, its solution,
with x, assumed deterministic, implies the
following mean and variance:

Exg = e Ftxg, var x¢ = (We/2F) (1-e2FE),

Since in reality we are unable to have t » =« to
obtain a large constant variance, we shall choose
F to be relatively large (and W, even larger).
However, such a choice drives the mean to zero,
which is not desired. Therefore, to compensate
for this. the x¢ used in (5) will actually be

the x¢ from (4-a) plus a constant nominal value
of xpome On the other hand, since the by pro-
cess has a mean and variance with the same form as
that for x¢, and the desired statistical proper-
ties of by are opposite those of xy, we choose

G to be relatively small.

Filtering and Detection Algorithm

Using the state and observation equations in
(4) and (5) above, we can generate MMSE estimates
X, Z, and b of the respective states x, z, and b
and use them to detect the onset of wind shear.
More specifically, recalling the definition of
z¢ in (3), it turns out that

n

¢ = Pr{t 2 Tlyg, 0585 2¢t] (6}

~>

i.e., the conditional mean Et is precisely the
probabitity that wind shear has occurred. How-
ever, because our mode!l represents a system of non-
linear stochastic differential eaguations, it is
not possible to derive the optimal estimate Z in
terms of a finite-dimensional realization. There-
fore, this so-cailed moment closure problem
compels us to seek a suboptimal filter. Once
specified, then we can use the suboptimal estimate
Z¢ of z¢ to generate an estimate T of T, the

first time of occurrence of a microburst, by
choosing some threshold k ¢ (0,1) and setting

T = minttiZg 2 k). )

It is the form of (7) that causes us to de-
scribe the problem as one of first-passage. Its
successful use as a detection algorithm will
depend heavily on the quality of the estimates of
z provided by the filter; the k parameter is also
important in that it is related to the performance
issue and the concomitant false-alarm and miss
error-probabilities. With this in mind, we have
opted to compare the use of the extended Kalman
filter (EKF) with the truncated second order
filter (TSOF) as presented, for example, by
Jazwinski [6,chap 9]. A slight modification in
the error-covariance equations, however, is
reaquired because of the martingale My in (4-b)
associated with the purely discontinuous process
2¢. In any case, with overbars denoting
suboptimal estimates and P denoting the
error-covariance matrix, we have the following:

dx| {0 -F 0 of|x ah/ax] _
az|={a|at+ 0 -1 0]{Z|at+P|sh/sz|v_ ~+IN  (8)
db{ |0 0 0 -G||® sh/3b
-F 0 0 -F 0 0 We 0 0O
dp = 0-Xx OfP+Pl 0-A O0}+}| 0 A(1-2) O
0 0 -G 0 0 -G 0 0 Be
e e by
1 3h/dx t | Sh/ax 1 -1
-V~ P|dh/dz| | dh/3z] P} dt - 5 V. PeSOT-IN
R VAT B VAT 9
where IN 2 dy - (R + 3 SOT)dt, innovations
sor 2 trace (pH], second-order-term, and
gl 325/3(7)2, Hess!an matrix.

In deriving these equaticns, use is made of the
fgct that the definition of z¢ in (3) implies

2§ = 2z¢. Also the term A(1-Z) in the
error-covariance equation is a result of the
quadratic variation of the martingaie My in

{(4-b). Finally note that if the term SOT is zero,
then the preceding equations define the EKF;
otherwise, they define the TSOF.

3. SIMULATION

The approach used in discretizing the con-
tinuous-time equations given in the previous
section is based on Euler’s approximation; see,
for example, Franklin and Powell {7, ch 3]. Since
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the equations in (4) are decoupled, we can illus-
trate the approach by discretizing (4-a) to obtain

Xep = (1 = FAYXK + wypd

where wy is a zero-mean Gaussian white noise
sequence with correlation matrix W.. To be
stable. one requires that |1-Fal<l, i.e.. 0 < F

¢ 2/48 for a sampling interval of length A

which, for us, has been chosen to be 1. Analogous
statements hold for (4-c). Therefore, recalling
the discussion on parameter selection in the
previous section on state-space models, we choose
F >1.90 and G = .0!.

The resulits obtained thus far from computer
simulations have been encouraging and lead us to
conclude that the overall approach is a sound one.
As is so often the case in such simulations, care
must be taken in selecting values of state and
observation noise statistics and initial error-
covariances to prevent filter divergence, and we
are continuing to investigate adaptive techniques
to remedy this problem. However, in those cases
where the filtered estimates did converge, the
decision that wind shear had occurred was made
within a few sampling intervals of the actual
occurrence. It is anticipated that a complete
presentation of these simulations will be
forthcoming in the near future.

we also plan to simulate microbursts through
the cse of 3 model based on the fluid continuity
waguat ton

Vs (ov) =0

with vertical hydrostatic equilibrium. Assump-
tions include inviscid flow with no heat input
{dry microburst). An azimuthally symmetric solu-
tion in cylindrical coordinates, with v, and

vy denoting vertical and radial velocity compo-
nents, respectively, is ‘

_ be ‘3--152/21\2(e_z/b - o7H7)
Vz T TooH
2 2
_ mlc 1 -eF /A o2/o
Ve T 73 r

Here, H is the actual scale height, A is the
initial radius at the top of the coiumn, ¢ is the
initial velocity or strength, and b is a parameter
affecting the shape (outflow height). Through a
s31ight modification, the model can accommodate
gcvmmetricgl microbursts with an essentially
arbitrary vertical shear profile, the addition of
a vortex ring to more closely simulate an actual
microburst, and wet microbursts. Given the
oresent state of knowledge concerning wind shear,
this model! produces geometries that are in excel-
lent agreement with those that have been actually
observed. Futhermore, with this more realistic
model, we shall be able to simulate radar returns
from several different range gates.

4. JMPLEMENTATION

In implementing the actual system, several
essential parameters regarding the hardware and
data acquisition scheme will have to be deter-
mined. These include items such as range and
antenna weighting functions, antenna gain, size of
the resolution volume scanned by the beam, re-
ceiver bandwidth, and pulse repetition time. In
this paper we shall only discuss the latter where,
ideally, it should be chosen long enough so that
returns from consecutive puises do not overlap and
yet short enough so that samples obtained at one
range are well correiated for information extrac-
tion purposes. We now elaborate.

Since the system studied here will be used in
airborne applications, the processing rate, and
thus the alert time, is a cruciai factor. The
processing rate has to be fast enough so that the
pilot can be warned well in advance to avoid wind
shear. This rate can be improved by overlapping
computation time with scanning/sampling time. In
this context, the system is thought of as two
separate units. The first is a radar that is
continuously transmitting and receiving signals
and a sampler that is sampling the received
signals and storing them in memory banks according
to their range as shown in Fig. 3. The second
unit is a processor that is computing estimates
and making decisions. While the processor is
processing returns from the first M pulses, the
returns of the second M pulses are being sampiec
and stored in memory. [n order to do this over-
lapping, the processor must process the data at a
rate higher or at least equal to the rate at which
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the data are received. For example. if M = 256
and Tg = .ims, then this rate is 1/25.6 kHz.

Such a high rate may not (depending on the value
of N) be achieved with a serial processor.
Instead, one can use a number of identical
processors that run in a parailel fashion; see
Figure 3. Each processor is small, fast, and
responsible for all the computation required at
one range gate. The computation consists of
spectral estimation, filtering, and abrupt jump
monitoring. In addition to achieving a high
processing rate, this scheme is advantageous in
that N decisions, regarding the presence or
absence of wind shear, at N range gates will be
made all at once. This is a very informative
aspect because in a way it reflects the dimension
of a microburst along the beam axis and it allows
for rejection of false alarms on part of the indi-
vidual processors, i.e., a microburst should
trigger the output of more than one processor.
Thus., a voting algorithm, based on prespecified
criteria, can be implemented to produce one final
decision.

A large number of range time sampies, however,
imposes a limitation on our processing scheme. A
large N requires a large number of processors
which could be impractical due to space and power
limitations on board an aircraft. In such a case
the N discrete sequences can be divided into
groups each of which is J sequences iong, where J
is a submultipte of N. Every group will be pro-
cessed in 3 parallel fashion on J processors,
while the different groups are fed serially. Even
in this mi«ed processing, an important improvement
in the processing rate wouid be achieved.

The prefliminary findings described above
straongly suggest that the first-passage analysis
we n3ve adopted provides a viable approach to the
croplem of identifying the onset of wind shear.
The results to date center on an idealized
svimnetric geometry for the wind pattern and have
neairctad noise processes specifically related to

arcund clutter, [t i3 not expected, however, that
g relaxation of these constraints will alter the
atic conclusion., Future work will incorporate
real data and thus will be able to determine the

ultimate efficacy of the approach.
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